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Abstract. We show new modeling aspects of stock return volatility processes, by first representing them
through Hammerstein Systems, and by then approximating the observed and transformed dynamics with
wavelet-based atomic dictionaries. We thus propose an hybrid statistical methodology for volatility approx-
imation and non-parametric estimation, and aim to use the information embedded in a bank of volatility
sources obtained by decomposing the observed signal with multiresolution techniques. Scale dependent
information refers both to market activity inherent to different temporally aggregated trading horizons,
and to a variable degree of sparsity in representing the signal. A decomposition of the expansion coefficients
in least dependent coordinates is then implemented through Independent Component Analysis. Based on
the described steps, the features of volatility can be more effectively detected through global and greedy
algorithms.

PACS. 02.50.Tt Inference methods – 05.45.Tp Time series analysis – 02.60.Gf Algorithms for functional
approximation

1 Introduction

One goal of this paper is to show that financial time series
analysis could take advantage from some methodological
principles adopted in other research fields, where the most
important goal is to detect, through sparsely represented
signals, all the relevant information, in the form of factors
or features, which characterize natural and experimental
phenomena [14,30,35]. Due to the importance of separat-
ing the underlying structure of volatility from the noise,
and thus to isolate the role that non-stationarity can play,
adaptive estimators are needed, in particular when deal-
ing with classes of functions which are endowed with a
variable degree of smoothness. Therefore, for time non-
homogeneous classes of functions like those related to the
realizations of volatility processes, inference models are
required to be flexible, in terms of the assumptions about
the probability distributions involved, and non-parametric
estimators are especially useful.

Another aspect of interest in this study, is that given
a certain stochastic process, the decomposition of its ob-
served realizations in statistically independent coordinates
may be a key goal in applications. A possible way of pro-
ceeding is to look at the problem of reducing the depen-
dence structure by developing techniques which transform
the data. Wavelets can play an important role in these
last cases, since they yield [1,27] de-correlating and sta-
tionarizing effects on the computed coefficient sequences.
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Consequently, statistical inference can be more effective
in the projected domain, yielding near-optimal minimax
estimates.

Our experiments show that approximation algorithms
such as the Matching Pursuit (MP) [31] effectively detect
patterns and features in high frequency financial time se-
ries [6], and can be successfully combined with an Inde-
pendent Component Analysis (ICA) [8,12] with the aim of
artificially learning the structure of a volatility process.

2 Hammerstein systems

The theory of identification of linear and non-linear
dynamic systems offers many aspects interconnecting
disciplines like signal processing, information theory and
statistical inference. Hammerstein systems [20,23,29]
are a possible model for dealing with both a non-linear
dynamic sub-system (NLDS) and a linear (LDS) one,
represented in time varying cascade time series form,
with parametric or non-parametric statistical structure,
and under stationary or non-stationary conditions. The
model can be simplified as follows:

Xt → NLDS → Zt → LDS → Yt

where Zt is not observable. The main problems are
1: recovering the unknown non-linearity from the ob-
served time series, for which kernel estimators have been
usually employed, and 2: searching for localization and
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parsimony/sparsity in the functional representation. A
compact functional form for the Hammerstein system is:

Y (t) =
∫ ∞

−∞
λ(t− τ)K(X(τ))dτ (1)

where K indicates the NLDS and λ the LDS blocks. A
correspondent discrete time series representation for (1) is
given by the following functional relation, where a time-
varying, truncated and with finite time support structure
may be described by a signal + noise model:

Y (t) =
N∑

i=1

l∑
γ=0

λi(t, γ)Ki[X(t, γ)] + ε(t) (2)

where now the functions and the time varying kernels as
well are not specified, and the ε term represents the dis-
turbance. This system, depending on the specification of
the λ and K dynamics, and on the ε’s pdf, can be regarded
as a parametric, semi-parametric or non-parametric sta-
tistical model, and it can be adapted to the analysis of
volatility processes. Among the possible characterizations,
we have chosen one that requires two fundamental steps:
wavelet-based transforms and independent component de-
compositions, as explained below.

3 Independent component analysis

ICA is related to linear and nonlinear mixture models [2],
and refers to noise-free or noisy data applications, thus
reflecting also typical choices (mixture models) and em-
pirical evidence (noise effects) found in financial modeling.
Furthermore, one might find more convenient to work with
innovation processes [25] derived from conditional values
of observation processes, because the latter are usually
more independent and non-Gaussian. Volatility processes
appear as innovation processes adapted to filtered infor-
mation flows and are characterized by an high order de-
pendence structure.

With Gaussian signals the Independent Components
are the Principal Components, while with non-Gaussian
signals ICA delivers superior performance, due to the fact
that it relies on high order statistical information coming
from higher order moments of the probability distribution.
This last fact leads to applications in financial time series,
due to the non-Gaussianity of return distributions, even if
other reasons may deserve consideration.

A non-linear relation Y = f(X) may be linearly ap-
proximated by AS, a linear ICA (L-ICA) where A is an
N ×M mixing matrix, with N ≥M1, and where the sen-
sors Xi, i = 1, . . . , N combine sources si, i = 1, . . . ,M ,
which are independent, non-Gaussian, but also unknown.

1 An M × M mixing matrix A is often studied; usually
M � N , with N the number of sensor signals. However, M =
N holds in many cases, too.

Thus, the problem is to estimate both the sources and the
mixing matrix from the observed outputs.

One thus tries to find a linear transform or de-mixing
matrix W such that U = WX = WAS are delivered
as the most independent or least dependent estimates for
the unknown sources. If W = A−1, clearly U = S, up
to permutation (R) and scale (D), i.e. P = RD = WA,
and thus with P = I one gets perfect separation under
normalization and re-ordering.

The solutions, in real applications, hold only approx-
imately, and are given by algorithms such as the Joint
Approximate Diagonalization of Eigenmatrices for Real
signals (JadeR) [9] or the fastICA [24,26], just to quote
the most popular ones. The de-correlation and rotation
steps which have to be implemented, thus deliver a set of
approximate M independent components. The following
examples combine model structures of the described
systems;

Hammerstein system and L-ICA:

The system Yt = Vt + εt, with Vt =
∑

m λmZt−m,
represents an Hammerstein system output relation, but
also an example of noisy ICA. If Zt = K(Xt) works
through some wavelet-based transforms, then the L-ICA
acts on the sequence space formed by the wavelet expan-
sion coefficients and decomposes the scales or resolution
levels.

Latent variable system:

The following extension, Yt = AtZt + εt; Zt = CtΦt + ηt,
where, as before, Zt = K(Xt) and Φt is an approximation
dictionary, refers to a sparsity constraint embedded in the
system, together with a decomposition step for Zt, due to
the presence of an atomic set of approximating functions
collected in an overcomplete dictionary. The last repre-
sentation suggests that the time varying Hammerstein
series can be approximated through the specification of
its kernels as a linear combination of basis sequences φk,
endowed with certain time and frequency supports, de-
pending on the selected atoms. The basis approximation
of the Hammerstein kernel can be described as:

λi(t, γ) ≈
S∑

s=0

αi(s, γ)φs(t) (3)

which leads to the following representation, in replacement
for (2):

Y (t) =
N∑

i=1

l∑
γ=0

S∑
s=0

αi(s, γ)φs(t)Ki[X(t, γ)] + ε(t). (4)

Identifying such system requires the estimation of the
expansion coefficients α; this problem is faced in this pa-
per, too. Under simplifying conditions on the functions
involved and by re-arranging variables and parameters
in (4), we can address with Y = Xβ + E the compact
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matrix form of (4), with Et representing both the mea-
surement and the approximation errors. This system can
be solved by numerically stable routines which compute
pseudo-inverse transform of X ; from the estimated β co-
efficients one can thus compute the approximated time
varying Hammerstein kernels.

Note that a function approximation problem is also ad-
dressed, since there are functional components in β that
have to be approximated from a finite set of available
training examples. Furthermore, the estimates for the pa-
rameters in the model are going to be computed under
almost no assumptions, since both non-Gaussianity and
non-stationarity are likely conditions under which the sys-
tem dynamics operate. The same conditions are typically
found while empirically investigated volatility processes.

4 Sparse component analysis

4.1 Modeling volatility processes

We start by casting the volatility process of interest in a
very general frame [7], already introduced in the examples,
and so to represent its dynamics by the following linear
system of equations:

Yt = AtXt + εt (5)
Xt = CtΦt + ηt (6)

where Yt are the observed financial returns2, Xt are un-
known system sources, At is an unknown mixing matrix,
εt ∼ i.i.d. (0, σε,t) is a noise process. Note that vt = σ2

ε,t is
here considered the volatility process, i.e. the latent pro-
cess underlying the observed returns.

The sources Xt have a possibly sparse decomposition
through Φt, a selected dictionary of functions delivering ei-
ther a basis or an overcomplete representation [10,30] for
the signal under investigation. In the latter case, linear
combinations of elements may suggest possible represen-
tations of remaining dictionary structures, thus offering
non-unique signal decompositions.

The corresponding expansion coefficients are here indi-
cated by Ct, while ηt is an i.i.d process, with no constraints
on the probability distributions3. Therefore, it may hold
as a quite general frame and it suggests a sort of model-
free approach for representing the dynamics of the system
of interest.

A special case [35] is when a dual system can be formed,
i.e. when a basis is obtained; in that case the system can
change according to the transform Φ−1

t = Ψt. As a direct
consequence, XtΨt = CtΦtΨt + ηtΨt; this last expression
can be expressed equivalently as X̃t = Ct + η̃t, while at

2 Stock returns are computed in the usual way, as rt =
ln(pt/pt−1) × 100, where pt are the prices of shares, indexes,
commodities or other financial activities.

3 Thus the fact that we don’t require positivity means that
we are not describing volatility through equation (6), but sim-
ply sources of it.

the observation level Yt = AtCt + Atη̃t + εt, or also Yt =
AtCt + ξt, with ξt = Atη̃t + εt ≡ AtηtΨt + εt.

To summarize, a new system is found:

X̃t = Ct + η̃t (7)
Yt = AtCt + ξt. (8)

If the signal-to-noise ratio (S/N) with regard to the
sources is high, then ηt ≈ 0 and ξt = εt. Thus, the same
volatility process initially described is found. If instead
S/N is low, the (square root) volatility process becomes
characterized by Σt = Dt + σε,t, where Dt = Atση,tΨt.
In the latter case, an overcomplete dictionary is available.
Note that system (5-6) represents a volatility process in
a way that generalizes other typical autoregressive form
of dependence employed by many models, depending on
the structure of the Φt matrix4; the volatility structure is
expressed in a non-parametric form and is investigated by
selected dictionaries of functions5.

Conversely, in system (7–8) the original returns have
a new decomposition with (8), where the mixing matrix
At operates on the computed transform expansion coef-
ficients Ct. While At accounts for modulating the de-
pendence structure of the latent volatility sources, the
wavelet-based expansion coefficients become the inputs
for the ICA step that follows. These coefficients, in (7),
are now sparsely represented in transformed and scaled
sources of volatility information obtained through ICA.

In other words, one can work in a signal or a sequence
space, respectively with functions or coefficient sequences;
the choice may depend on criteria such as sparsity of repre-
sentation and statistical independence of the coordinates
under which the stochastic process is decomposed. As a
rule, we can also build an optimization system with a
regularized objective function through some smoothness
priors, so to estimate the parameters involved. The strat-
egy here is to proceed recursively (in the mean square
sense), through iterations of a MP processing over the ob-
served returns and with the WP libraries, thus looking at
Yt ≈ PtΦt + ξt = AtCtΦt + ξt

6

The MP algorithm works on a sparse Pt and performs
a denoising step, but remains unable to disentangle the
components composing the operator Pt. It will be left to
an ICA step dealing with this aspect; the compression and
the decorrelation properties of wavelet transforms can be
better supported with a more effective search for least
dependent components.

4 We might also design a state-space structure for represent-
ing the system dynamics.

5 We can also maintain, according to the representation
adopted, an underlying well-known hypothesis that a mixture
basic law of information arrivals is governing the market dy-
namics.

6 The noise is including an approximation error from the
system equation and residual measurement effects εt.
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4.2 Searching for sparsity

With Sparse Component Analysis (SCA) [14], one at-
tempts to optimize the compression power of certain
transforms and to attain estimation results under non-
parametric statistical models, according to minimax re-
sults in decision science.

Based on system (5–6), alternative learning models can
be designed; for instance, A and C can be computed from
the following optimization problem:

minA,C
1

2σ2
|| ACΦ−X ||2P +

∑
j,k

βjh(cj,k) (9)

where a connection with sparse representations [19] can be
made by changing the norm in P and allowing for more ro-
bustness in the underlying probability distributions. With
h(.) representing a prior distribution on the dictionary ex-
pansion coefficients, or otherwise an empirical probability
distribution function that could be computed from the
estimated wavelet coefficients, the functional (9) general-
izes other similar structures like the Method of Frames,
the Basis Pursuit, or the equivalent Linear Programming
problem representations (see [10] for a review).

As a final remark of this section, note the term ACΦ
can be replaced, for M = N and the de-mixing matrix
indicated by B = A−1. Thus, it follows that S ≈ BX
and the term within the norm of the objective function
becomes || CΦ−BX ||2P .

The goal of achieving sparsity by using wavelet-based
representations of signals inspires strategies to eliminate
the redundant information. This can be done in the
wavelet coefficients domain, given the relation between
true and empirical coefficients, d̃jk = djk +εt. The wavelet
shrinkage principle [15–17] applies a thresholding strategy
which yields de-noising of the observed data; it operates by
shrinking wavelets coefficients toward zero so that a lim-
ited number of them will be considered for reconstructing
the signal.

Since a better reconstruction might be crucial for fi-
nancial time series in order to capture the underlying
volatility structure and the hidden dependence, de-noising
could be usefully employed for these temporally and spa-
tially heterogeneous signals.

5 Multiresolution analysis
and overcompleteness

In order to build a wavelet system one needs (A) a scal-
ing function φ whose dilates and translates constitute
orthonormal bases for all those Vj subspaces which are
obtained as scaled versions of the subspace V0 to which
φ belongs, and (B) a mother wavelet ψ together with
ψjk generated by j-dilations and k-translations, such that
ψjk(x) = 2

j
2ψ(2jx − k). Furthermore, with all of the in-

formation obtained from the approximations computed at
successively coarser resolution levels we can form [13] a

Multiresolution Analysis (MRA), i.e. a sequence of closed
subspaces7 satisfying . . . , V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂
. . . , with ∪̄j∈ZVj = L2(R), ∩j∈ZVj = {0} and the addi-
tional condition f ∈ Vj ⇐⇒ f(2j.) ∈ V0.

The last condition is a necessary requirement for iden-
tifying the MRA, meaning that all the spaces are scaled
versions of a central space, V0. An MRA approximates
L2[0, 1] through Vj generated by orthonormal scaling func-
tions φjk, where k = 0, . . . , 2j − 1. These functions allow
also for the sequence of 2j wavelets ψjk, k = 0 . . . , 2j − 1
to represent an orthonormal basis of L2[0, 1]. The set of
shifted scaling functions {φ0(t − k), k ∈ Z} is an un-
conditional Riesz basis for V0, i.e. linearly independent
functions are obtained; then, the scaled and shifted func-
tions φjk(t) are Riesz bases as well for the scaling spaces
Vj . On these spaces the incremental information pro-
cess is due to the signal which is projected such that
PVjX(t) =

∑
k cx(j, k)φj,k(t) and Dj(t) = PVj−1X(t) −

PVjX(t), or otherwise directly through the projections
in the Wj wavelet subspaces, i.e. Dj(t) = PWjX(t) =∑

k dx(j, k)ψj,k(t).

Signal decompositions with the MRA property have
near-optimal properties in a quite wide range of inhomo-
geneous function spaces [13,22,32].

As an alternative to orthonormal wavelet represen-
tations there are other signal representations defined as
overcomplete, and able to offer some advantages (see [34],
for details), particularly in terms of robustness to noise
in the coefficients and to quantization effects, and also
with regard to the aspects related to a certain freedom in
choosing the wavelet family and exploiting the irregular
sampling design. A practical example comes from func-
tion dictionaries, i.e. collections of parameterized atomic
structures [10]; they are available for representing many
classes of functions and are formed directly from a par-
ticular family, like wavelets, or from merging two or more
dictionary classes.

Dictionaries which are overcomplete bring of course
redundancy into the model and deliver non-unique sig-
nal decompositions. When instead a basis can be selected,
the dictionary results complete. The kind of overcomplete
representation that we have adopted in the experiments is
based on wavelet packets (WP), which represent an exten-
sion of the wavelet transform to a richer class of building
block functions. They allow for a better adaptation due to
an oscillation index f related to a periodic behavior in the
series which delivers a richer combination of functions. As
for wavelets, an admissibility condition is required, too:∫ +∞
−∞ W0(t)dt = 1, ∀(j, k) ∈ Z2 we have from [28]:

2−
1
2W2f (

t

2
− k) =

∞∑
i=−∞

hi−2kWf (t− i) (10)

7 Here expressed in nesting order as in a ladder of Sobolev
spaces, with the more negative the index the larger the space.
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Fig. 1. WP table and time-frequency signal segmentation obtained resolution-wise or level-by-level.

where f relates to the frequency and h to the low-pass
impulse response of a quadrature mirror filter, and

2−
1
2W2f+1

(
t

2
− k

)
=

∞∑
n=−∞

gn−2kWf (t− n) (11)

where g is an high pass impulse response. For compactly
supported wave-like functions Wf (t), finite impulse re-
sponse filters of a certain length L can be used, and by P -
partitioning in (j, f)-dependent intervals Ij,f one finds an
orthonormal basis of L2(R) (i.e. a wavelet packet) through
{2− j

2Wf (2−jt − k), k ∈ Z, (j, f) | Ij,f ∈ P}. A better
domain, compared to simple wavelets, is obtained for se-
lecting a basis to represent the signal, but an orthogonal
wavelet transform can always be selected by changing the
partition P and defining w0 = φ(t) and Wf = ψ.

Figure 1 describes the structure of within-block coef-
ficients of the WP formulation, and thus represents its
contribution in representing the signal features under a
varying oscillation index. The WP table presents coeffi-

cients stored in sequence order according to increasing os-
cillation index; the blocks are ordered by frequency, and
within the blocks the wavelet coefficients are ordered by
time. Thus, the low frequency information in the signal
is expected to be concentrated at the left and the high
frequency information at the right of the table8.

5.1 The matching pursuit learning algorithm

The MP algorithm is an example of a greedy approxi-
mation algorithm that has been successfully implemented
in many studies for its simple structure and effectiveness.
A signal is decomposed as a sum of atomic waveforms,
taken from families such as Gabor functions, Gaussians,
wavelets, wavelet and cosine packets, among others. We
focus on the WP table, and represent the signal as:

WP (t) =
∑

jfk wj,f,kWj,f,k(t) + resn(t).
8 The oscillation index goes from 0 to 2J −1, going rightwise.
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This choice offers some advantages, like flexibility of
the approximating kernels, better spatial adaptivity and
time-frequency localization power, use of prior knowledge
and possible dimension reduction.

In summary, the MP algorithm approximates a func-
tion with a sum of n elements, called atoms or atomic
waveforms, which are indicated with Hγi and belong to
a dictionary Γ of functions whose form should ideally
adapt to the characteristics of the signal at hand. The
MP decomposition refers to a greedy algorithm which at
successive steps decomposes the residual term left from
a projection of the signal onto the elements of a selected
dictionary, in the direction of that one allowing for the
best fit. At each time step the following decomposition is
computed, yielding the coefficients hi which represent the
projections, and the residual component, which will be
then re-examined and iteratively re-decomposed accord-
ing to:

f(t) =
n∑

i=1

hiHγi(t) + resn(t) (12)

1. initialize with res0(t) = f(t), at i = 1;
2. compute at each atom Hγ the projection µγ,i =∫

resi−1(t)Hγ(t)dt;
3. find in the dictionary the index with the maximum

projection,

γi = argminγ∈Γ || resi−1(t) − µγ,iHγ(t) ||,

which equals from the energy conservation equation
arg maxγ∈Γ | µγ,i |;

4. with the nth MP coefficient hn (or µγn,n) and atom
Hγn the computation of the updated nth residual is
given by:

resn(t) = resn−1(t) − hnHγn(t);

5. repeat the procedure from step 2, with n = n+ 1 and
until i ≤ n.

With H as an Hilbert Space, a function f ∈ H is de-
composed in this frame as f = 〈f, gγ0〉gγ0 + Rf , with f
approximated in the gγ0 direction, orthogonal to Rf , such
that ‖f‖2 =| 〈f, gγ0〉 |2 +‖Rf‖2. Thus, the minimization
of the ‖Rf‖ term requires a choice of gγ0 in the dictionary
such that the inner product term is maximized (up to a
certain optimality factor). The selection of these atoms
from the D dictionary is made by an index γ0 based on a
choice function conditioned on a set of indexes Γ0 ∈ Γ .

5.2 The best orthogonal basis algorithm

The Best Orthogonal Basis (BOB) algorithm [11] is em-
ployed here as an alternative to the MP optimization
method, with the goal of minimizing an additive9 cost

9 Non-additive cost functions and near-best bases can be con-
sidered too.

function computed within a library of orthonormal ba-
sis representations generated by the WP transform and
through the correspondent expansion coefficients wjf .

The procedure adaptively picks the best orthogonal
basis among those which can be formed as sub-collections
of the WP dictionary. The BOB algorithm thus repre-
sents a global optimizer which computes the transform
by searching for the minimum of a cost function E(C) =∑

j,f E(wj,f ) in O(LN) operations, with L = log2N the
number of levels of the binary tree and N is the signal
length (this compared to the O(MLN) cost of the MP,
with M packets selected). The algorithm is known to de-
liver near-optimal sparsity representations, but it doesn’t
show the same property under harder conditions, like in
non-orthogonal contexts.

In particular, the BOB algorithm steps find a
minimum entropy transform from the dictionary, i.e.
min [entr f(B)] | B ∈ Γ , where B is an orthobasis in the
selected dictionary Γ and f(B) are a vector of coefficients
in the same basis. In terms of the entropy, commonly used
in statistics for estimation and compression problems, the
cost function holds as Eent

j,f =
∑

k ŵ
2
j,f,k log ŵ2

j,f,k, for
ŵj,f,k = wj,f,k × (|| w0,0 ||2)−1. The total energy is
given by E =

∑n
k=1 f

2
n, which in turn corresponds to

decomposing the energy among details and approxima-
tions, i.e. Es

j +
∑J

j=1 E
d
j , where Es

j = 1
E

∑ n

2J

k=1 s
2
j,k and

Ed
j = 1

E

∑ n

2J

k=1 d
2
j,k, for j = 1, . . . , J .

In Figure 2 we report in (A) the top-100 largest co-
efficients approximation with the BOB and the MP algo-
rithms after running on the WP dictionary and show in
(B) a comparison with the MP algorithm.

The locations of the high energy spots indicate differ-
ent costs in terms of the computed entropy for the two
dictionaries, depending on which frequency information is
captured by the related transforms. A low frequency con-
centration of energy appears in the WP cost table. The
plots suggest that BOB doesn’t work optimally for the
non-stationary signal, while MP works more efficiently;
this is due to its greedy nature, and it results more ef-
fective for a better ability to capture the local features,
both in time and in frequency. The MP scheme exploits
the correlation power inherent to the collection of wave-
forms available through the WP dictionary, and it does so
throughout more scales and by extending the basis which
represents the signal.

6 Non-parametric statistical inference

The (covariance) non-stationarity of financial time series
and their dependence structure are related aspects, in the
sense explained by [4,33], especially when dealing with
high frequency data.

We refer in our experiments to the Nikkei stock return
index and choose the series of 1990, among several years
of available market activity, with observations collected at
high frequencies, i.e. every minute (1 min). The total sam-
ple has 35,463 data, with intra- daily trading prices cov-
ering the working week, holidays and weekends excluded.
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Fig. 2. Signal approximation from the WP table with the 100
largest selected coefficients from BOB (a) and from MP (b).

We then form a temporally aggregated time series of cor-
respondent five-minute (5 min) data from the original one;
thus, they are simple averages of components sampled at
1 min time interval. The aggregated sample consists of
7092 observations10.

In Figure 3 we show some diagnostic plots, i.e. the au-
tocorrelation functions computed on the 1 min and 5 min
samples and considering absolute and squared values, from
which the dependence structure clearly shows up. Volatil-
ity persistence is thus observed from these plots, and it is
very likely that the dependence structures might be mixed
with other features in the data, such as periodicity. These
last components are usually not easily interpreted and de-
tected by standard volatility models; thus, they may pre-
vent the researcher from evaluating the underlying low
frequency dynamics in the most correct way. Neverthe-
less, they might just represent, as also suggested by [33]
the evidence of spurious features in the data.

6.1 Estimation procedure

Following [18], an oracle orthonormal basis B diagonal-
izes the covariance operator of a non-stationary stochastic
process. Thus, one should estimate the covariance func-
tion Γ of the process by first rotating it into a basis B,
then forming the empirical covariance function Γ̂ and fi-
nally eliminating the off-diagonal terms (following the ex-
pected values based on theoretical operators), in order to
obtain after this last step DB = diag(σ2

i,B). Then, by ro-
tating back in the original basis, the resulting estimate is
ΓB = BDBB′.

In order to start this procedure, a table of empirical
variances σ2

i has to be built from the coefficients estimates
obtained with ad hoc operators for these types of pro-
cesses, i.e. cosine packets or localized cosines. The trans-
formed values are then smoothed by thresholding, and
the inverse transform is taken to achieve a reconstructed
smoothed estimate σ̄2

i . At this point, the BOB algorithm
is applied to a cost function built from the squared val-
ues of the smoothed empirical variances, and it yields the
basis to be used for forming the diagonal matrix DB and
the covariance ΓB estimates.

The problem with this elegant method is that only esti-
mates for the conditional variance or the volatility may be
used, instead of true values, which brings bias into the pro-
cedure. Furthermore, in our context, the covariances are
time varying latent variables, either conditional on past
return information sets or dependent on stochastic distur-
bances themselves. Therefore, special care should be re-
quired in order to deal with the selection of the threshold-
ing rule. Our procedure considers these aspects, together
with the fact that the setting is one with non-Gaussianity
and non-stationarity.

The autocorrelation function instead of the autoco-
variance function is thus monitored as the key diagnos-
tic function in our procedure, while it is computed based
10 The experiments were conducted with S + Wavelets [5].
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Fig. 3. ACF of absolute (indexed by a) and squared (indexed by s) raw 1 min and 5 min returns.

on the approximations delivered by the MP residues,
through their absolute and squared values. De-noising, a
by-product of MP, is enforced through the ICA whitening
(decorrelation) step, and since a rotation (change of ba-
sis) is also performed in the expansion packet coefficients
space, the dimension reduction occurs through the selec-
tion of the most important scales, according to the energy
content of the diagonal entries of the estimated mixing
matrix. The algorithm is described as follows:

– observe the features of K, the original empirical ACF
of the absolute and squared returns;

– compute K̄, by calculating its value based on the trans-
formed residues of the MP approximations11 obtained
with an overcomplete dictionary;

11 We have tested the MP approximation power by letting
the algorithm work with 50, 100, 200 and 500 atoms from the
selected WP dictionary.
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Table 1. Weights of the estimated ICA mixing matrix distributed across resolution levels for residual 5 min series obtained in
the WP table.

Res. lev. 0 1 2 3 4 5 6

WP-A

level 0 0.2218 0.0028 0.0085 0.0047 0.0023 0.0069 0.0085

level 1 0.0002 0.1951 −0.0013 0.0001 −0.0189 −0.0035 −0.0037

level 2 0.0068 0.0003 −0.167 0.0015 0.0007 0.0019 −0.001

level 3 0.0031 −0.0057 −0.0008 −0.1438 −0.0019 −0.0045 0.0059

level 4 0.0012 −0.0125 0.0017 0.0028 −0.1318 0.0117 0.0

level 5 0.0032 −0.0023 0.0014 −0.0045 0.0008 −0.0011 −0.1147

level 6 0.0023 −0.0009 −0.0018 0.0047 −0.0082 −0.121 0.0017

– check how the features have been approximated by
MP;

– select with ICA the most informative (in terms of en-
ergy) resolution levels from the computed MRA sig-
nals, thus reducing the dimension of the problem;

– re-start MP based on the new restricted range of scales
and re-compute the transformed residues;

– get the final estimate K̂ and control the feature detec-
tion power

In Table 1 we have the estimated mixing matrices A,
where the observed sensor signals are those computed at
each resolution levels by the WP transform. These already
de-seasonalized signals are now passed through the ICA
algorithm for the extraction of “M” possible sources which
we set equal to the number of sensors. For a possible in-
terpretation of how these level dependent ICs may relate
to financial market dynamics, activities and operations,
one might consider that relevant work has been recently
proposed by researchers addressing the hypothesis that
financial markets operate under conditions driven by dy-
namics which are different according to the time horizons
considered for evaluating returns.

Since our sensor signals are obtained from a multi-
resolution decomposition of the signal, instead of mea-
suring each IC’s contribution to the individual returns
we extract from each detail level an approximate value
suggesting its contribution to the signal features indepen-
dently from the other levels. The highest values computed
suggest what are the dominant ICs on a scale-dependent
basis, without identifying their specific nature or the un-
derlying economic factors, being them system dynamics
or pure shocks.

From the WP estimated mixing matrix A we note a
strong within-level factor always dominating apart from
levels 5 and 6, where a mutual cross-influence appears to
dominate. Considering the results obtained with the ICA
intervent, we may refer back to the performance of the MP
algorithm with a restricted domain of application, given
by the four finest resolution levels of the WP table, among
which the energy is distributed according to Table 2.

Figure 4 reports the absolute and the squared ACFs
for the residuals from the WP table. We observe that with

Table 2. Energy percentage distribution among the 3 finest
resolution levels for residual 5 min series obtained in WP ta-
ble and computed via the MP algorithm at the approximation
power of 50, 100, 200 and 500 atoms.

T = # of Atoms 50 100 200 500

WP table

level 0 0.228 0.268 0.339 0.472

level 1 0.139 0.088 0.135 0.120

level 2 0.1 0.146 0.125 0.126

level 3 0.533 0.497 0.401 0.282

the WP table the dependence left in the ACF plots is less
evident than before, particularly with regard to the long
memory component, while the initial autocorrelation de-
creases with T , thus suggesting that the feature detection
power improves qualitatively by simply concentrating the
MP activity only on the finest resolution levels.

6.2 Interpreting the results

The advantages of working with band-pass wavelet filtered
detail signals in terms of temporal aggregation effects
are known to come from more stationarized and decor-
related signals, being them almost uncorrelated along in-
dividual scales and almost independent across scales. In
such a non-Gaussian and non-stationary setting, there is
still residual time non-homogeneity, due to heteroscedas-
ticity, too. However, the non-Gaussian probabilistic na-
ture of the resolution-wise sequences obtained from the
WP-transformed return series is such that ICA performs
well.

The MP algorithm benefits from working with least
dependent coordinates, since it learns in a faster and bet-
ter way; the selection of the MRA signals reflects the de-
composition provided by ICA on the wavelet expansion
coefficients, and the least dependent components lead to
more orthogonalized MP and thus an increased efficiency.
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Fig. 4. ACF of 5 min residuals from MP with 200 and 500 atoms on the WP table (A-C are absolute values; B-D are squared
values) with the finest four resolution levels.

7 Conclusions
The methodological novelty of this work refers to the pos-
sibility of designing a sparse approximation method which
enables signal sources separation through an Independent
Component Analysis sequentially applied to WP-filtered
signals, with the result that a sort of Sparse Component
Analysis is obtained.

With high frequency financial time series the results
are promising since for the volatility process related to a
stock index return index we found a sparse representation
together with near optimal decomposition in a set of least
dependent components.

The selection of finer resolution levels eliminates re-
dundant information by keeping highly localized time res-

olution power without simultaneously losing too much fre-
quency resolution; this is due to the fact that low scale
information can be reproduced by averaging information
from the higher scales.

Sparsity basically means that the covariance matrices
have fast off-diagonal elements decay when a locally sta-
tionary process is observed. This sparse matrix should be
estimated and ideally might be assumed to be a band or
near diagonal matrix; one solution is Best Orthogonal Ba-
sis, but we have seen that for our time series is sub-optimal
compared to the greedy Matching Pursuit, which is found
to deliver a near-optimal method of tuning the resolution
pursuit.
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